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Abstract (227):  19 

Previous studies about vector-borne diseases have emphasized the feedback between human 20 

psychology and diseases but neglected the changes in psychological processes.  Here I first 21 

studied whether and how the two types of psychological dynamics in people’s Terror-To-Death 22 

(TTD) — periodical terror reinforcement and memory decay of terror — can influence the host-23 

vector-pathogen interactions. Through developing a generic Ross-MacDonald model with TTD 24 

dynamics tailored for Zika virus transmitted by Aedes aegypti mosquito, I found that in general, 25 

the increase in initial terror increases control effort, while memory decay of terror decreases 26 

disease control. Memory decay also exhibits a threshold effect: when initial terror is below 27 

certain level, TTD decay would not influence the system much; once initial terror reaches a 28 

threshold, memory decay of TTD can largely reduce the public’s control effort, increase 29 

mosquito population and disease level in the system under a larger mosquitoes’ carrying capacity.  30 

Adding periodical terror reinforcement could introduce dynamical oscillation to the system, 31 

dampen the peak of human infection, and shorten the time of disease outbreak. If the 32 

reinforcement frequency is large enough, system dynamics could approach the scenario with 33 

constant TTD in the absence of memory decay. This work significantly advances the theory in 34 

disease epidemiology and biopsychology and can provide guidance for disease control by 35 

considering the joint effects of initial terror, the public’s memory decay, and the frequency of 36 

terror reinforcement simultaneously.  37 

 38 

 39 

 40 
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Introduction: 41 

Human activities can largely influence disease dynamics, e.g., modifying hosts' behaviors to 42 

influence disease spread among patches1-3, or changing species diversity to affect pathogens’ 43 

competence etc. 4,5. One direct way to shape pathogens’ populations comes from disease control6-
44 

9. Governments often design a variety of disease control strategies to achieve a goal of disease 45 

reduction (e.g., expand surveillance network; improve cost-effective vector controls for Zika, 46 

malaria, dengue fever etc. 10-14). One critical strategy is to educate the public about the danger of 47 

infectious diseases and the necessity of disease control, e.g., broadcasting the death number 48 

caused by infectious diseases via social media, or performing regular visits by local health 49 

professionals. 15-18. Previous studies have demonstrated that disease information conveyed 50 

through social media or governments’ education can largely affect the public’s attitudes to 51 

infectious diseases and further influence the public’s control behaviors on diseases11,17,19.  52 

However, those studies often neglected the dynamics in public’s perceptions of the risks 53 

of infectious diseases. For example, disease education from governments often takes place as a 54 

routine (e.g., weekly or monthly), which could create a periodical effect on the public’s 55 

psychological reactions towards infectious diseases. For example, people’s Terror-To-Death 56 

(TTD) psychological reactions could increase around the time when governments broadcast how 57 

seriously infectious diseases can lead to death20-22.  58 

Another common change in the public’s psychological process towards disease comes 59 

from human memory decay. Take people’s TTD as an example, after human populations build up 60 

their initial terror towards infectious diseases, this terror would gradually decay with time. For 61 

example, previous studies demonstrated that people’s TTD and panic about infectious diseases 62 

could exhibit memory fade23-25. This forgetting process of fear plays an important role in brain 63 
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functions and human evolution (e.g., “forgetting cells” in brain; memory decay of emotions can 64 

serve as a treatment to deal with pathological psychological issues 23,26,27 ) and can be well 65 

depicted by mathematical curves24,28. The strength of initial terror built towards infectious 66 

diseases and the memory fading rate of this terror can together affect the dynamics of public’s 67 

TTD reactions.  68 

The above two types of changes of TTD, combined with the deaths and human infection, 69 

would largely influence the public’s perceived risk of infectious diseases. The perceived risk can 70 

motivate the public to take action to control infectious diseases. Beyond risk, other factors can 71 

also influence the public’s attitudes towards disease control. For example, for vector-borne 72 

diseases, many vector control strategies involve the usage of chemicals (e.g., pesticides) 9,29, 73 

which can cause environmental pollution. The public would tend to reduce disease control efforts 74 

due to their concerns about environmental contamination. Hence, public’s control efforts on 75 

vectors often positively relate with people’s TTD, deaths, and infections, but negatively correlate 76 

to environmental concerns11.   77 

In this study, I will first incorporate those two types of temporal changes of public’s TTD 78 

into a generic vector-borne disease model (i.e., a modified Ross-MacDonald modified with 79 

control effort) and explore whether and how TTD dynamics can affect the host-vector-pathogen 80 

dynamics. This model is specifically tailored and parameterized for Zika virus transmitted by 81 

Aedes aegypti mosquito. Through this model, I first explored the separate and joint effects of 82 

initial terror and memory decay of terror through analytical and numerical solutions. I then added 83 

the periodical terror reinforcement into the model and further simulated the joint effects of all 84 

three factors on disease prevalence, death cases due to infection, total infected humans, mosquito 85 

population, disease control strength, and efficacy in the system.  86 
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Methods: 87 

Here I assume both human and mosquito populations are well mixed in the system. 88 

Initially, the system has 𝑆𝐻0  susceptible human population and 𝑆𝑀0  susceptible mosquitoes. Zika 89 

virus would be then introduced into this system by first infecting one human in that patch (𝐼𝐻0 =90 1). At any time, human can be in any of the three states: susceptible to infection (𝑆𝐻), infected 91 

(𝐼𝐻) or recovered (𝑅𝐻). Certain proportion of the infected humans could have serious symptoms 92 

and eventually die from infection (𝐷𝐻). The total human population at that time would be 𝑆𝐻 +93 𝐼𝐻 + 𝑅𝐻 − 𝐷𝐻 while the human population that can produce offspring is:  𝑁𝐻 = 𝑆𝐻 + 𝐼𝐻 + 𝑅𝐻. 94 

I also considered the natural birth rate (𝑏𝐻) and death rate (𝜇𝐻) for human populations. The 95 

mosquito population has three states: stage without infection but susceptible to virus (𝑆𝑀), and 96 

adult stage with infection (𝐼𝑀), which can transmit virus to susceptible human (𝑆𝐻). The 97 

infection rates from susceptible mosquitoes and human are 𝛽𝑀 and 𝛽𝐻, respectively. The natural 98 

death rate of adult mosquitoes is 𝜇𝑀. The birth of mosquitoes is limited by carrying capacity, 99 

having the form 𝑓(𝑀, 𝐾) = 𝑀(1 − 𝑀 𝐾⁄ ) (1) where 𝐾 is the maximum carrying capacity of 100 

mosquitoes, and 𝑀 = 𝑆𝑀 + 𝐼𝑀, the total number of mosquitoes that produce offsprings.  101 

During disease outbreak, human and mosquitos’ dynamics can drive human’s control 102 

actions on both susceptible and infected mosquitoes through usage of pesticides (control effort as 103 𝐶). The control strength is positively correlated to the public Terror-To-Death (TTD) with 104 

memory decay (𝑓(𝐴, 𝐵, 𝑡) = 1.84 𝐴𝑙𝑜𝑔 (𝑡)𝐵+1.84 (2); details see23,30) and the number of death cases 105 

(𝐷𝐻), where A and B describe the initial strength of the public fear to death and the forgetting 106 

rate of the fear with time t after the introduction of disease. Similarly, control strength would also 107 

increase with the public averse to disease infection (𝛾) and the number of infected people (𝐼𝐻). In 108 
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contrast, control strength also decreases with environmental concerns (𝜖) caused by one unit of 109 

control action (e.g., one unit usage of pesticide) and the amount of control action (e.g., control 110 

strength 𝐶).  111 

Here I propose a modified Ross-Macdonald equation31,32 to capture the above dynamics 112 

among human, mosquitoes and control actions with Zika virus: 113 

𝑑𝑆𝐻𝑑𝑡 = 𝑏𝐻𝑁𝐻 − 𝛽𝐻𝐼𝑀𝑆𝐻 − 𝜇𝐻𝑆𝐻  (3) 114 

𝑑𝐼𝐻𝑑𝑡 = 𝛽𝐻𝐼𝑀𝑆𝐻 − 𝑟𝐼𝐻 − 𝜇𝐻𝐼𝐻   (4) 115 

𝑑𝑅𝐻𝑑𝑡 = 𝑟𝐼𝐻 − 𝜇𝐻𝑅𝐻   (5) 116 

𝑑𝐷𝐻𝑑𝑡 = 𝛿𝐼𝐻   (6) 117 

𝑑𝑆𝑀𝑑𝑡 = 𝑓(𝜂(𝑆𝑀 + 𝐼𝑀), 𝐾 ) − 𝛽𝑀𝐼𝐻𝑆𝑀 − 𝜇𝑀𝑆𝑀 − 𝐶 𝑆𝑀 (7) 118 

𝑑𝐼,𝑀𝑑𝑡 = 𝛽𝑀𝐼𝐻𝑆𝑀 − 𝜇𝑀𝐼𝑀 − 𝐶 𝐼𝑀  (8) 119 

𝑑𝐶𝑑𝑡 = 𝑓(𝐴, 𝐵, 𝑡)𝐷𝐻 + 𝛾𝐼𝐻 − 𝜖𝐶   (9) 120 

where Eq. 3-6 describe the dynamics of human population, Eq. 7-9 are for mosquito 121 

dynamics, while Eq. 9 indicates the dynamics of control actions on either susceptible or infected 122 

mosquitoes. For simplicity, here I also assumed that per death case would initially produces 100 123 

times control of one infected case (i. e. , 𝐴 = 100𝛾). The details of all the variables in the model 124 

are described in Table 1. The parameters and their values are in Table 2.  The time t has unit as 125 
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per day. In the following, I use 1000 time-steps for all simulations, which is enough for the 126 

system to reach equilibria under one disease outbreak with the assigned parameters.  127 

Through this above model, I first analytically studied the equilibrium of disease 128 

prevalence, control effort as well as the total mosquito population size in the absence of 129 

periodical terror reinforcement. Armed with the above analytical calculations, I then explored the 130 

separate and combined effects of initial terror A and terror decay B on system dynamics and 131 

equilibria by arranging different combinations of those two factors at a gradient of mosquitoes’ 132 

carrying capacity. Lastly, I added the periods of terror reinforcement to the simulations and 133 

explored the joint effects of the three factors related to TTD temporal changes: initial terror A, 134 

terror decay B, and the number of periodical terror reinforcement on system dynamics and 135 

equilibria as well.  136 

Here I focused on six indexes to keep track of the system dynamics or equilibria: disease 137 

prevalence 𝑝, number of deaths in human, number of infected humans, total mosquito 138 

population, control strength and efficacy (𝐼𝐶𝑜𝑛𝑡−𝐻 −𝐼𝐶𝑜𝑛𝑡+𝐻𝐶𝑡  (10), where 𝐼𝐶𝑜𝑛𝑡−𝐻  and 𝐼𝐶𝑜𝑛𝑡+𝐻  represent 139 

the human infected cases at time t in the absence and presence of control actions respectively and 140 

C is the control strength at time t). For the case in the presence of periodical terror reinforcement, 141 

I also keep the record on the changes of overall sum of deaths in human, total control effort, 142 

mosquito population, and control efficacy across the entire time steps of one disease outbreak.   143 

 144 

 145 

 146 
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Table 1 All variables and the corresponding initial values in the model 147 

Variables Description Initial values 𝑁𝐻
 Human population size that 

can produce offspring 

𝑆𝐻 + 𝐼𝐻 + 𝑅𝐻 

𝑆𝐻 Susceptible humans Random number ∈ [700, 710] 𝐼𝐻 Infected humans 1 as initial value 𝑅𝐻 Recovered humans 0 𝐷𝐻 Death cases in humans 0 𝑆𝑀 Susceptible mosquitoes Random number ∈ [1000, 

1010] 𝐼𝑀 Infected mosquitoes 0 𝐶 Control on mosquitoes, either 

adult or larvae stages 

0 

 148 

Table 2 All parameters and the corresponding values in the model. Some parameter values were 149 

chosen from the incidence and mortality in early Zika outbreaks in South America (based on 150 

daily values; see Reference). 151 

Parameters Description Value Reference 𝛽𝐻 Transmission rate in 

humans 

1.5× 10−4  

𝛽𝑀 Transmission rate in 

mosquitoes 

3.0 × 10−4  
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𝜇𝐻 Natural mortality in 

humans 

(8.6/1000)/365  33 

𝜇𝑀 Natural mortality in 

mosquitoes 

1/13  34 

𝑏𝐻 Birth rate in humans (9/1000)/365  35 𝑟 Recovery rate in 

humans 

0.037  36 

𝛿 Composite rate 190/3,474,182  35 𝜂 Egg laying rate for 

mosquitoes 

10  34 

𝐴 Initial control due to 

terror-to-death  

1000 or vary 

 

 

𝐵 Memory decay of 

terror 

2 or vary  

𝜖 Demotivation to 

control per unit of 

control action 

100 or vary  

𝛾 Control strength per 

infected case on adult 

mosquitoes 

 𝑒−𝜖/80  

𝐾 Carrying capacity for 

mosquito  

20000 or vary  

 152 

 153 
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Results 154 

Analytical solutions 155 

By summing up Eq. 3-5 but deducting Eq. 6, I calculate disease prevalence 𝑝∗ and 156 

control strength 𝐶∗ at equilibria when the total human population does not change (i.e., 157 

𝑑(𝑆𝐻+𝐼𝐻+𝑅𝐻−𝐷𝐻)𝑑𝑡 = 0): 158 

𝑝∗ = 𝐼𝐻∗𝑆𝐻∗+𝐼𝐻∗+𝑅𝐻∗ = 𝑏𝐻−𝜇𝐻δ        (12)  159 

Where disease prevalence is fixed given the birth, natural death rate and composite rate 160 

from infected to death.  161 

and 𝐶∗ = 1𝜖 (𝑓(𝐴, 𝐵, 𝑡)𝐷𝐻∗ + 𝛾𝑝∗)  (13) 162 

in which control action at equilibrium mainly depends on the public perception of Terror-163 

To-Death (TTD). In general, TTD: 𝑓(𝐴, 𝐵, 𝑡) follows the forgetting curve23: i.e., the strength of 164 

TTD is highest when terror is first built up in public, this initial terror would later decay with 165 

memory fade. Therefore, how strongly public’s initial TTD caused by Zika virus (A parameter) 166 

and how fast this fear can decay with memory (B parameter) would largely influence the 167 

control’s strength on mosquitoes at equilibrium in the absence of periodical terror reinforcement. 168 

By summing up Eq. 8-9 and setting up the sum = 0, I can further calculate the 169 

equilibrium of total mosquito population (𝑆𝑀∗ + 𝐼𝑀∗): 170 

𝑆𝑀∗ + 𝐼𝑀∗ = 1𝐶+𝜇𝑀 𝑓(𝜂(𝑆𝑀∗ + 𝐼𝑀∗), 𝐾)  (15) 171 



11 

 

Eq. 15 showed that mosquito population size at equilibria depends on control action (𝐶) 172 

and mosquitoes’ carrying capacity (𝐾). Therefore, larger control would lead to smaller mosquito 173 

population with the modification from mosquitoes’ carrying capacity.  174 

Numerical simulations 175 

In the absence of periodical terror reinforcement  176 

In general, the increase in initial terror could largely increase control strength on the 177 

vector population, which then decreases disease level in the system (compare the solid and 178 

dashed lines in black or red in Fig. 1). Memory decay of this terror would offset the effects of 179 

elevated terror, exhibiting the opposite effect of the increased initial terror: e.g., reducing control 180 

effort, boosting mosquito population and overall disease level (e.g., see the relative locations of 181 

the black lines with B = 0 and red lines with B = 2 in Fig. 1) in the system. Specifically, memory 182 

decay of terror would decrease the terror level as well as the public’s tendency for control effort, 183 

thus, mosquito population size would increase due to less control actions. Increased number of 184 

mosquitoes would lead to an increase in human infection and death cases in the human 185 

population (see relative locations of the black and red lines in Fig. 1B, C). The increased disease 186 

would need a longer time to cease, so the larger rate of memory decay would drive the disease to 187 

linger longer time (e.g., the curves with higher peaks would also take a longer time for the 188 

disease to drop to 0; see Fig. 1C). However, less disease also corresponds to larger control effort 189 

(see the relative locations of the four lines in Fig. 1E). Hence, larger initial terror or small 190 

memory decay would lead to a lower peak of control efficacy (Eq. 10; also see relative locations 191 

of lines in Fig. 1F).  192 

However, the change of disease in response to memory decay largely depends on the 193 

levels of initial terror. When initial terror (i.e., parameter A) is relatively large, the disease is 194 
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more sensitive to memory decay (i.e., a small memory decay can drive a larger disease change 195 

(see the larger differences between the dashed red and black lines in Fig. 1). When initial terror is 196 

relatively small (e.g., A = 100), even large memory decay (e.g., B = 2) would not change disease 197 

level much (e.g., small difference between the solid red and black lines in Fig. 1). Hence, once 198 

initial terror is below a certain threshold value, memory decay would not influence disease much 199 

(extreme case is when A = 0, TTD would be 0 no matter what B is; see Eq. 2). In other words, if 200 

the public has very low initial terror to death caused by infectious diseases, there would be no 201 

sufficient motivation for them to control the disease at the beginning, no matter how fast they 202 

forget the terror after their initial exposure to this disease. In other words, keeping up the same 203 

strength of control (i.e., with constant TTD with time; black lines in Fig. 1) would make a bigger 204 

difference for disease levels in the system when people initially have a larger terror and control 205 

action.    206 

At a given initial terror, the effect of memory decay on the system would also interact 207 

with mosquitoes’ carrying capacity. In general, the mosquito population size is larger under a 208 

larger carrying capacity (see more red areas at the top of Fig. 2C), corresponding to a larger 209 

disease prevalence (Fig. 2A). In general, memory decay of terror would produce more significant 210 

influences on control effort and mosquito population when the system has a larger mosquitoes’ 211 

carrying capacity (see the color changes between white and red in Fig. 2B, C when carrying 212 

capacity is > 10000). When the mosquito population is bounded under a smaller carrying 213 

capacity (e.g., K < 5000 along the y-axis in Fig. 2), the decrease in control effect due to larger 214 

memory decay (see the color trend from red to white along the x-axis in Fig. 2B) may not 215 

increase mosquito population much (see the general blue colors at the bottom of Fig. 2C). 216 

Similarly, under a smaller mosquitoes’ carrying capacity, the increase in initial terror, which 217 
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largely increases total control effort, may not lead to the reduction in mosquito population (see 218 

the general blue colors at the bottom between Fig. S1B and C along x-axis). Total control 219 

efficacy (𝐼𝐶𝑜𝑛𝑡−𝐻 −𝐼𝐶𝑜𝑛𝑡+𝐻𝐶𝑡 ) is mainly determined by the total control effort (𝐶𝑡): larger control effort 220 

usually leads to smaller control efficacy (see the opposite color trends between Fig. 2B and D, 221 

Fig. S1B and D). Therefore, total control efficacy is larger at smaller carrying capacity due to the 222 

overall smaller control effort (see more red colors at the bottom of Fig. 2 and S1).   223 

In the presence of periodical terror reinforcement  224 

Introducing periodical terror reinforcement to the public could balance out the effects of 225 

memory decay on disease dynamics to a certain degree (see the decreasing trend of either 226 

introducing period or decreasing B in disease; both dashed and dotted lines are below the solid 227 

black line in Fig. 3A-C; the color trend in Fig. 5C). This periodically reinforced terror would act 228 

as a repeated reminder for the public of the initial terror they perceived at their first exposure to 229 

infectious disease; thus, more frequent terror reinforcement could slow down the public’s 230 

memory decay of TTD, reduce mosquito population (Fig. S2, 3C in Appendix), infected human 231 

(Fig. S2, 3A in Appendix), and deaths (Fig. S2, 3B) caused by infectious diseases (compare the 232 

solid and dashed lines in Fig. 3). The influences on the system from periodical terror 233 

reinforcement are similar as elevated initial terror (see the almost overlapped dynamics of the 234 

dashed and dotted lines in Fig. 4). The basic difference between periodical terror reinforcement 235 

and elevated initial terror comes from how those factors can shape TTD dynamics: at certain 236 

interval between periods, TTD could first decrease due to memory decay, but then increase due 237 

to the enhanced terror from the next period reinforcement, producing an oscillation in TTD along 238 

time (see oscillation curves in Fig. 3, 4, 6D, E); elevated initial terror would bring up the initial 239 

TTD to balance out the later TTD decay due to memory loss, creating a decreasing dynamic of 240 
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TTD even both factors would rise up the average TTD over time (see Eq. 2). The extreme case is 241 

when period number is very large, TTD would be reinforced faster before memory decay really 242 

lower the terror. In that way, TTD would almost become one constant value, approaching the 243 

effects from a constant initial terror in the absence of memory decay (see the gradually 244 

approaching trends from the black to the blue, to the green lines towards the red lines in Fig. 6). 245 

The frequency and magnitude of oscillation in disease dynamics and mosquito population size 246 

would also decrease with the increase of the terror-reinforcement frequency (compare the blue, 247 

green and red curves in Fig. 6A-E). In addition, the oscillation of TTD due to periodical terror 248 

reinforcement would first enter the system through disease control (see Eq. 9), which would also 249 

lead to stronger oscillations in control effort as well as mosquito population accordingly (see the 250 

lines with periodical cycling in Fig.s 3, 4, and 6D, E). The oscillations in mosquito population 251 

would then influence the dynamics of disease level in the system (Eq. 3-6; see also a relatively 252 

weaker cycling in Fig.s 3, 4 and 6A, C). The death due to infection, which is the least related to 253 

TTD oscillations, exhibits almost no oscillation (see the lines without much cycling in Fig.s 3, 4 254 

and 6B). 255 

 Given that periodical terror reinforcement can dampen the peak of infected humans as 256 

well as shorten the time of disease outbreak (see the relative locations of human infected curves 257 

at different period numbers in Fig. 6C), periodical terror reinforcement could largely reduce 258 

average disease prevalence (Fig. 5A, C), total mosquito population (Fig. S2, S3C in Appendix) 259 

and total infected humans (Fig. S2, S3A). Hence, although periods of terror reinforcement could 260 

increase total control effort (see Fig. S2, S3D), overall speaking, disease control efficacy still 261 

increases with the increase of terror-reinforcement frequency (Fig. 5B, D). 262 

Discussion: 263 
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This study systematically studied how the temporal changes in public’s psychology can 264 

shape their behaviors such as control actions accordingly, which further affect vectors and 265 

diseases’ dynamics in the entire system. In general, memory decay of Terror-To-Death (TTD) 266 

would weaken people’s motivation for disease control, and boost mosquito population and 267 

disease levels when the environment has relatively larger mosquitoes’ carrying capacity (see 268 

upper areas across panels in Fig. 2). In contrast, TTD’s periodical changes due to repeated terror 269 

reinforcement (e.g., governments’ education about infectious diseases through social media or 270 

professionals’ home visitations on a regular basis etc.) could enhance public’s control effort on 271 

vectors and may significantly reduce disease levels (Fig. 5).   272 

  The findings of this work can be broadly applied to the arrangement of different disease 273 

control strategies in real systems. For example, if a government has a general knowledge of 274 

people’s memory decay and the total resource that can be used for the education of infectious 275 

diseases, this study can help to calculate a balance point between the strategies of how frequently 276 

(x-axis of Fig. 5A, B) and strongly per education (y-axis of Fig. 5A, B) the government should 277 

carry out to maximize disease reduction under a reasonable range of control efficacy. Or, with a 278 

fixed frequency of disease education and general knowledge of memory decay, this study can 279 

also help governments calculate how effective each education program needs to be to achieve a 280 

goal of certain disease reduction. Future studies can be done about what types of social media, 281 

what kind of education program can produce larger effects on the public’s TTD as well as 282 

generating better motivation for control actions.  283 

In addition, this frequent terror reinforcement for disease control can be compared to a 284 

wax-and-wane process of organisms’ immune systems. The reintroduction of terror to the public 285 

is similar to vaccination to (re)build up the immune system’s memory of antigens37,38. When the 286 
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public has gradually forgotten the initial TTD (similar as the wane process), terror reintroduction 287 

(e.g., through educational messages about the risks of infectious diseases on social media) would 288 

allow the public to regain their TTD. The strength of terror reinforcement (e.g., people’s 289 

perception about disease risks at each reinforcement; compared to the doses of vaccination39) as 290 

well as the frequency of reinforcement 16-18 would produce a balanced effect on the overall 291 

disease control effort and efficacy.  Therefore, our models and results can be easily modified and 292 

applied to the design of effective vaccination, adding to the body of knowledge in related 293 

medical areas40-42. 294 

Furthermore, the connection between control effort and vector population size should 295 

also be paid attention to beyond people’s psychological reactions. The logic chain for effective 296 

disease control is that the public’s psychology affects control efforts, which could modify vector 297 

population size and disease levels in the system. The key to this logical process comes from the 298 

effect of control efforts on mosquito populations43, similar to the idea of a top-down effect in 299 

ecology. Mosquitoes’ carrying capacity would diminish the control effect on mosquito 300 

population. At smaller carrying capacity, mosquitoes experience larger density-dependent 301 

mortality; thus, larger control, which causes larger mortality, may not necessarily reduce 302 

mosquito population size11,48-51 (see the little or no correlation between control effort and 303 

mosquito sizes at lower carrying capacity in Fig. 2 and S1). This density-dependent effect in 304 

vector population could largely weaken the negative correlation between control strength and 305 

disease levels, which may void the effect of the public’s psychological reactions on disease 306 

levels. Hence, other control strategies may need to be introduced to reduce mosquito population 307 

size (e.g., more effective controls on mosquito population: arranging mosquitoes’ life stages to 308 

reduce the density-dependent effect 44,45). Beyond the public’s Terror-To-Death (TTD), other 309 
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psychological processes such as rebellious mentality (e.g., people may take little or no control 310 

when they see similar social media information too frequently; 46-48) could lead to opposite 311 

control behaviors. In addition, TTD may be different from person to person. Some people may 312 

be more prone to experience a heightened fear of infectious diseases than others49-51. This TTD 313 

tendency could exhibit diversity across locations and cultures51-53. People who are in different 314 

age groups, or have different pre-existing health conditions, can also have different fear levels 315 

(e.g., individuals experiencing serious diseases tend to have a heightened tendency to TTD54,55). 316 

This individual heterogeneity to TTD has not been included in this work, future studies and 317 

surveys can explore this direction.  318 

Since repeated terror reinforcement can introduce periodical dynamics in disease and 319 

vectors (see oscillations in Fig.s 3, 4 and 6), this factor can be well added to a large body of 320 

studies related to diseases’ cycling under metapopulation/metacommunity structures1,56,57.  In that 321 

way, the public’s psychological reactions can be added on the top of the layer of disease 322 

transmission and host migration among patches, which would advance the current theory of 323 

disease epidemiology by incorporating biopsychology.   324 
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Fig. 1 System dynamics under four combinations of initial TTD and memory decay:  A = 100, B 

= 0; A = 1000, B = 0; A = 100, B = 2; A = 1000, B = 2, corresponding to the solid black, dashed 

black, solid red and dashed red lines, respectively. All other parameters are listed in Table 2.  



 

Fig. 2 The overall system’s average disease prevalence (A), total control effort (B), total 

mosquito population size (C) and total control efficacy (D) across the entire simulation time-

steps under the combined influences of mosquitoes’ carrying capacity K and the memory decay 

rate B of the public’s Terror-To-Death (TTD) with constant initial terror as 1000. The more red-

areas indicate the larger values while the more blue -areas mean smaller values of the above four 

indexes. All other simulation parameters are listed in Table 2. 

 



 

Fig. 3 System dynamics under the combined influences of memory decay and periodical terror 

reinforcement with the fixed initial terror A = 1000. Here I show the situations under two levels of 

terror decay with and without periodical terror reinforcement: B = 3 without periodical terror decay 

(black curves), B = 3 with periodical reinforcement (dashed lines), and B = 2 without periodical 

terror decay (dotted curves).  Here the period is set up as every 20 days for one terror reinforcement. 

All other parameters are listed in Table 2. 

  



 

Fig. 4 System dynamics under the combined influences of initial terror and periodical terror 

reinforcement with the constant terror decay B = 1. Here I show the situations under two levels of 

initial terror with and without periodical terror reinforcement: A = 500 without periodical terror 

decay (black curves), A = 500 with periodical reinforcement (dashed lines), and A = 1000 without 

periodical terror decay (dotted curves).  Here the period is set up as every 10 days for one terror 

reinforcement. All other parameters are listed in Table 2. 

 

 



 

Fig. 5 The overall system’s average disease prevalence and control efficacy across the entire 

simulation time-steps under the combined effects between the number of periods for TTD 

reinforcement and initial terror strength (Panel A, B with constant memory decay B = 2), or the 

memory decay of terror (Panel C, D with constant initial terror A = 1000). The more red-areas 

indicate the larger values while the more blue -areas mean smaller values of either average disease 

prevalence or control efficacy.  All other simulation parameters are listed in Table 2. 

 

 



 

Fig. 6 The system dynamics in disease prevalence, serious human cases, infected human, mosquito 

population, control effort and control efficacy under three levels of frequency in terror 

reinforcement with memory decay and the case without memory decay in terror: no terror 

reinforcement (solid black lines), 50 periods of terror reinforcement (blue lines) and 100 periods 

of terror reinforcement (green lines) and the case without memory decay (red lines). Here total 

time-steps = 1000, A = 1000 and B = 3 of TTD for all four lines. All other parameters are listed in 

Table 2.   
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